6.1 Perpendicular and Angle Bisectors

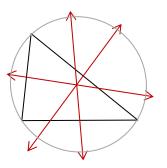
Perpendicular Bisector			
Segment that is	to and a		
Perpendicular Bisector Theorem		I	
If a point is on the of the segment	of a segment, then		from the
Converse of the Perpendicular Bisecto			
If a point is from the _	of a segment,	then it is on the	of the
segment			
In the diagram, \overline{JK} is the perpendicular bis	sector of \overline{NL} .		
Find NK.			N
		8	$\frac{6x-5}{6x-5}$
		M	JK
		8	4x+1
Explain why M is on \overline{JK} .			L
			\wedge
Angle Bisector			
Ray that an			
Angle Bisector Theorem			
If a is on the	, then it is	from the	of the angle
	m		
Converse of the Angle Bisector Theore			
Converse of the Angle Bisector Theore If a is		gle, then it is on the	
If a is		gle, then it is on the	
If a is		gle, then it is on the	
	_ from the of an an	↑	
If a is		gle, then it is on the	
If a is Find the value of x. $(3x + 5)^{\circ}$	_ from the of an an	↑	
If a is	_ from the of an an	↑	
If a is Find the value of x. $(3x + 5)^{\circ}$	_ from the of an an	↑	

Name: ___

Geometry 6.1 Do you have enough information to conclude that \overrightarrow{QS} bisects $\angle PQR$?

R

Wr	rite Equations of Perpendicular Bisectors
1.	Find
2.	Find
3.	Find
4.	Write using from #3 and from #1


Write the perpendicular bisector of a segment with endpoints D(5, -1) and E(-11, 3)

Assignment: 296 #2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 38, 40, 43 = 15 total

Geometry 6.2	Name:
Geometry	
6.2 Bisectors of Triangles	
Concurrent Several lines that at same(
Concurrency of Perpendicular Bisectors of a Triangle	
The of a intersect at a point that is triangle	from the of a
Het wetrole are cold from store at A. P. and F. Where could the wetrol distributor b	a leasted : f it is a suidistant from these

not precizers are solu nom store at A	b, and L. Where could the preizer distributor be located in it is equilatiant from those
three points?	
В	
•	
$A \bullet$	• E

Circumcenter				
• The point of _	of the	of a triangle.		
• If a circle was	around a	, the	would also be the	of
the circle.				

Geometry 6.2			Name:
Concurrency of Angle Bisector	rs of a Triangle		
The angle bisectors of a	intersect at a point that is	from the	of a triangle
Incenter			
	of the in a triangle, the	_	of the circle.
<i>N</i> is the incenter. Find <i>EN</i>			C C C C C C C C C C C C C C C C C C C

Assignment: 305 #1, 4, 6, 8, 12, 14, 16, 26, 27, 29, 30, 31, 32, 36, 37, 51, 53, 55, 56, 58 = 20 total

6.3 Medians and Altitudes of Triangles

		Λ
Median		$\wedge \times$
Segment that connects a to a Point of concurrency is called the The centroid is the	of side of a triangle.	
Concurrency of Medians of a Triangle		
The medians of a triangle intersect at a point that is the of the	of the	from each to
Each path goes from the midpoint of one edge to the opposite If <i>SC</i> = 2100 ft, find <i>PS</i> and <i>PC</i> . If <i>BT</i> = 1000 ft, find <i>TC</i> and <i>BC</i> . If <i>PT</i> = 800 ft, find <i>PA</i> and <i>TA</i> .	e corner. The paths me	eet at <i>P</i> .
Find the coordinates of the centroid of $\triangle ABC$ with vertices $A(0, 4), B(-4, -2), \text{ and } C(7, 1).$		

Geometry 6.3	Name:
Altitudes	
Segment from a and	to the opposite side of a triangle.
Point of concurrency is called the	
Concurrency of Altitudes of a Triangle	
The lines containing the of a trian	ngle are
Acute $\Delta \rightarrow$ orthocenter triangle	
Right $\Delta \rightarrow$ orthocenter of tria	angle
Obtuse $\Delta \rightarrow$ orthocenter of triangle	
Find the orthocenter.	
In an triangle, the vertex angle are all the	,,, andfrom the
Given: $\triangle ABC$ is isosceles, \overline{BD} is a median	B
Prove: \overline{BD} is an angle bisector	×
Statements	Reasons
1.	1. A D C
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.

Assignment: 314 #2, 4, 6, 8, 10, 12, 14, 16, 18, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 40, 52, 56, 58, 60, 63 = 25 total

6.4 The Triangle Midsegment Theorem

			•
Midsegment of a Triangle			
Segment that connects the	of two	of a triangle	
Midsegment Theorem			
The midsegment of a triangle is	to the	side and is	as long as that
In $ riangle RST$, show that midsegment \overline{MN} is paralle	el to \overline{RS} and that $MN = \frac{1}{2}$	¹ / ₂ <i>RS</i> .	$\begin{array}{c c} & Y \\ & 4 \\ \hline \\ & -2 \\ \hline \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $
Name the midsegments. Draw the third midsegment.			S U V 57 in. R W T 90 in.
Let UW be 81 inches. Find VS.			

Geometry 6.4 Given: CF = FB and CD = DA

Given: $CF = FB$ and $CD = DA$ Prove: $\overline{DF} \parallel \overline{AB}$		D
Statements	Reasons	E
1.	1.	C
2.	2.	F
3.	3.	Б
4.	4.	

Assignment: 321 #2, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 31 = 20 total

6.5 Indirect Proof and Inequalities in One Triangle

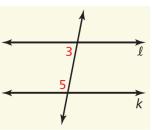
Indirect Reasoning

- You are taking a multiple-choice test.
- You don't know the correct answer.
- You eliminate the answers you know are incorrect.
- The answer that is left is the correct answer.

You can use the same type of logic to prove geometric things.

Indirect Proof

- Proving things by making an ______ and showing that the ______ leads to a ______.
- Essentially it is proof by ______ all the other _____.


Steps for writing indirect proofs

- 1. ______ what you are trying to ______. Temporarily, assume the ______ is _____ and that the ______ is _____.
- 2. Show that this leads to a _____ of the _____ or some other _____.
- 3. Point out that the _____ must be _____, so the _____ must be _____.

Suppose you wanted to prove the statement "If $x + y \neq 14$ and y = 5, then $x \neq 9$." What temporary assumption could you make to prove the conclusion indirectly?

How does that assumption lead to a contradiction?

Write an indirect proof that if two lines are *not* parallel, then consecutive interior angles are *not* supplementary. **Given** Line ℓ is not parallel to line k.

Prove $\angle 3$ and $\angle 5$ are not supplementary.

Geometry 6.5				Name	:
Big Angle O	Opposite Big Side Theorem				
	of a triangle is				the
	side isthan t	he angle opposite the s	horter side.		
Big Side Op	posite Big Angle Theorem				
If one	of a triangle is	than another	, then the	opposite the	angle is
	than the side opposite the				
List the sides	in order from shortest to lor	igest.			

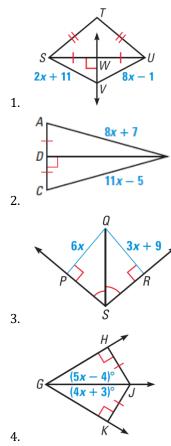
R 29° 30° T

Triangle Inequality Theo	orem				
The of two	of a triangle is	than the	of the	side.	
AB + BC > AC; AB + AC > B	BC; BC + AC > AB				

A triangle has one side of 11 inches and another of 15 inches. Describe the possible lengths of the third side.

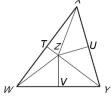
Assignment: 328 #2, 4, 6, 8, 12, 14, 16, 18, 20, 22, 24, 26, 28, 32, 40, 47, 49, 52, 53, 55 = 20 total

6.6 Inequalities in Two Triangles

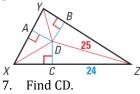

Hinge The	eorem				
If of one Δ are congruent to		_ of another Δ , and the	angle of the 1	angle of the $1^{st} \Delta$ is	
	angle of the $2^{nd}\Delta$, then the				
	40°	10 60°			
Converse of the Hinge Theorem					
	of one Δ are congruent to				
the	of the $2^{nd}\Delta$, then the	_angle of the 1 st Δ is	than the	$_$ angle of the $2^{nd} \Delta$.	
If $PR = PS$ and $m \angle QPR > m \angle QPS$, which is longer, \overline{SQ} or \overline{RQ} ? If $PR = PS$ and $RQ < SQ$, which is larger, $m \angle RPQ$ or $m \angle SPQ$?					
Given: $\overline{AB} \cong \overline{BC}$, $AD > CD$					
	$BD > m \angle CBD$				
Statements	3	Reasons 1.	A	D C	
1.		1.			
2.		2.			
3.		3.			

Two groups of joggers leave the same starting location heading in opposite directions. Each group travels 2 miles, then changes direction and travels 1 mile. Group A starts due north then turns 35° toward west. Group B starts due south then turns 25° toward east. Which group is farther from the start location? Explain your reasoning.

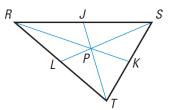
Assignment: 335 #2, 4, 6, 8, 10, 12, 13, 14, 15, 16, 20, 21, 22, 24, 25 = 15 total


Geometry Chapter 6 Review

Find the value of x.


In the diagram, the perpendicular bisectors of ΔWXY meet at point Z. Find the indicated measure.

R


- *XZ* = 42 *ZV* = 31 *WT* = 35 5. Find *YZ*.
- 6. Find *TX*.

In the diagram, the angle bisectors of ΔXYZ meet at point *D*.

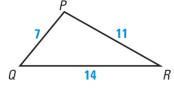
8. Find AD.

P is the centroid of ΔRST .

- 9. If *LS* = 36, find *PL*.
- 10. If *TP* = 20, find *TJ*.
- 11. Where is the orthocenter on an acute triangle? Right triangle? Obtuse triangle?

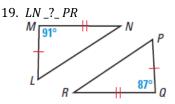
Δ

Two midsegments of $\triangle ABC$ are \overline{DE} and \overline{DF} .

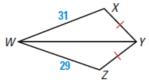

- 12. Find *DB*.
- 13. Find *DF*.

L

- 14. If DE = 12 and AC = 2x, find the value of x.
- 15. Which side is longest?



16. Which angle is largest?



- 17. A triangle has one side length of 9 and another of 8. Describe the possible lengths of the third side.
- 18. Write a temporary assumption you could make to prove the conclusion indirectly: If $RS + ST \neq 12$ and ST = 5, then $RS \neq 7$.

Copy and complete with >, < or =.

20. *m∠WYX* _?_*m∠WYZ*

Name: ___

21. Two boats leave the port. Boat A sails 50 miles due south then turns 20° towards the west and sails 10 more miles. Boat B sails 50 miles due north and then turns 30° towards the east and sails 10 more miles. Which boat is farther from the port?

Answers				
1. 2				
2. 4				
3. 3				
4. 7				
5. 42				
6. 35				
7. 7				
8. 7				
9. 12				
10. 30				
11. Inside triangle; on right angle of triangle; outside triangle				
12. 10				
13. 13				
14. 12				
15. <i>LJ</i>				
16. ∠ <i>P</i>				
17. 1 <i>< x</i> < 17				
18. $RS = 7$				
19. >				
20. >				
21. Boat A (From the hinge theorem. The angle inside the triangle is 160° compared to 150° for boat B.)				